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Abstract—Text clustering is a challenging problem due to
the high-dimensional and large-volume characteristics of text
datasets. In this paper, we propose a collapsed Gibbs Sampling
algorithm for the Dirichlet Process Multinomial Mixture model
for text clustering (abbr. to GSDPMM) which does not need to
specify the number of clusters in advance and can cope with the
high-dimensional problem of text clustering. Our extensive ex-
perimental study shows that GSDPMM can achieve significantly
better performance than three other clustering methods and can
achieve high consistency on both long and short text datasets. We
found that GSDPMM has low time and space complexity and can
scale well with huge text datasets. We also propose some novel
and effective methods to detect the outliers in the dataset and
obtain the representative words of each cluster.

I. INTRODUCTION

Text clustering [1] is a widely studied problem with many
applications such as document organization, summarization,
classification, and browsing. The biggest challenge of text
clustering is the high-dimensional problem of the text data.
This corresponds to the fact that the text lexicon is rather large
(with the order of 105), while each document contains only a
small number of words (with the order of 102). As discussed
in [2], the similarity between high-dimensional vectors will
lose their effectiveness and statistical significance because of
irrelevant attributes, this is also called the dimensionality curse.

In [3], we introduced a collapsed Gibbs Sampling algorith-
m for the Dirichlet Multinomial Mixture model (GSDMM) to
deal with the short text clustering problem. GSDMM defines
the probability of a document choosing each cluster with a
metric similar to that of the Naive Bayes Classifier [4]. In
detail, GSDMM evaluates the frequency of the words in a
document appearing in each cluster as some kind of similarity
between the document and the clusters. As GSDMM only
considers the words in the current document, it will not be
affected by other irrelevant words in the vocabulary, and can
deal with the high-dimensional problem of text clustering.
GSDMM can also infer the number of clusters automatically
as long as the initial number of clusters is larger than the true
number of clusters in the dataset. However, it is difficult to
set a proper initial number of clusters K for GSDMM as we
do not know the true number, as a result, we may have to
choose a really large K to ensure safety which will result in
the complexity of GSDMM to be large.

In this paper, we use the Dirichlet Process Multinomial
Mixture (abbr. to DPMM) model to model the generative
process of documents, which can be considered as an infinite

extension of the Dirichlet Multinomial Mixture (DMM) model.
The DPMM model assumes that there is an infinite number
of latent clusters, but only a finite number of them are used
to generate the observed documents. The advantage of the
DPMM model is that the number of clusters K is not required
as an input parameter but grows with the data. Yu et al.
[5] proposed a blocked Gibbs sampling algorithm for an
approximation of the DPMM model, however, their method is
slow to converge. Zhang [6] used the DPMM model for online
document clustering and used empirical Bayes method [7] to
estimate those parameters instead of taking a full Bayesian
approach. Neal [8] introduced a collapsed Gibbs Sampling
algorithm for the general Dirichlet Process Mixture (DPM)
model. Specifically, MacEachern [9] and Neal [10] proposed
the collapsed Gibbs Sampling algorithm for the Dirichlet
Process Normal Mixture model and the Dirichlet Process
Bernoulli Mixture model, respectively. However, these mixture
models are not appropriate for text clustering. Differently, we
are the first to propose the collapsed Gibbs Sampling algorithm
for the Dirichlet Process Multinomial Mixture model (abbr. to
GSDPMM) for text clustering, which is fast to converge and
can scale well with huge text datasets. GSDPMM can infer
the number of clusters automatically and can deal with the
high-dimensional problem of text clustering. We also propose
some novel and effective methods to detect the outliers in the
dataset and obtain the representative words of each cluster.

In the experimental study, we compared GSDPMM with
K-means [11], LDA [12], and GSDMM [3]. We found that
GSDPMM can achieve significantly better performance than
these methods on both long and short text datasets. We run
each algorithm 20 times on each dataset and found that the
standard deviations of the results of GSDPMM are quite small,
which indicates that GSDPMM has high consistency.

The contributions of this paper are summarized as follows:

• We are among the first to use the Dirichlet Process
Multinomial Mixture (DPMM) model for text clus-
tering, and our experimental study has validated its
effectiveness. We find it can cope with the high-
dimensional problem of text clustering.

• To the best of our knowledge, we are the first to pro-
pose the collapsed Gibbs sampling algorithm for the
DPMM model for text clustering, which can achieve
very good performance on both short and long text
clustering. Meanwhile, this algorithm has low time
and space complexity and can infer the number of
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clusters automatically.

• We propose some novel and effective methods to
detect the outliers in the dataset and obtain the repre-
sentative words of each cluster.

The remainder of this paper is organized as follows. In
Section II, we review the related work for text clustering. In
Section III, we introduce the Dirichlet Process Multinomial
Mixture (DPMM) model, then we introduce the GSDPMM
algorithm in Section IV. In Section V, we describe the design
of experiments to evaluate the performance GSDPMM com-
pared with other three clustering models, and study the special
properties of GSDPMM. We finally present conclusions and
future work in Section VI.

II. RELATED WORK

The clustering methods can be generally categorized into
the following two categories: similarity-based clustering and
model-based clustering.

A. Similarity-based Clustering

Similarity-based clustering methods mostly use the vector
space model to represent data points and choose some simi-
larity metric to measure the similarity between data points.

Partitional algorithms like K-means [11] and K-medoids
[13] are one kind of similarity-based clustering methods that
formulate clustering as an optimization problem: find K cluster
centers and assign the data points to the nearest cluster center,
so that the squared distances from the cluster are minimized.
The advantage of partitional algorithms is that they are efficient
and easy to implement. However, the number of clusters need
to be specified in advance, and they are sensitive to the
initialization.

Hierarchical algorithms [14] are another kind of similarity-
based clustering methods that recursively find nested clusters
either in agglomerative mode or divisive mode. The hierar-
chical algorithms are particularly useful to support a variety
of searching methods because they naturally create a tree-like
hierarchy which can be leveraged for the search process [15].
The drawback of hierarchical algorithms is that they need to
assume the true number of clusters or a similarity threshold,
and they cannot scale well with large data sets.

Density-based algorithms [16][17] define the clusters as
areas of higher density than the remainder of the dataset. The
advantage of density-based algorithms is that they do not need
to specify the number of clusters in advance, and can detect
the outliers of the dataset. However, they have limitations in
handling high-dimensional data like text. Because the feature
space of high-dimensional data is usually sparse, density-based
algorithms have difficulty to distinguish high-density regions
from low-density regions [18].

B. Model-based Clustering

Model-based methods assume data points are generated by
a mixture model, and then use techniques like EM [19] or
Gibbs Sampling [20] to estimate the parameters of the mixture
model, so as to obtain the clustering results.

The most widely used model-based clustering method is
the Gaussian Mixture Model (GMM) [21], which assumes
that data points are generated by a mixture of Gaussian
distributions. However, the complexity of GMM is too large
for high-dimensional data like text. Nigam et al. [22] pro-
posed an EM-based algorithm for the Dirichlet Multinomial
Mixture (DMM) model for classification with both labeled
and unlabeled documents. When only unlabeled documents
are provided, this algorithm turns out to be a clustering
model. In [3], we introduced a collapsed Gibbs Sampling
algorithm for the DMM model (GSDMM) to deal with the
short text clustering problem. GSDMM can cope with the
high-dimensional problem of short texts, and can also infer the
number of clusters automatically as long as the initial number
of clusters is larger than the true number of clusters. However,
it is difficult to set a proper initial number of clusters K for
GSDMM as we do not know the true number of clusters, as
a result, we may have to choose a really large K to ensure
safety which will result in the complexity of GSDMM to be
large.

Yu et al. [5] proposed a blocked Gibbs sampling algorithm
for an approximation of the Dirichlet Process Multinomial
Mixture (DPMM) model, however, their method is slow to con-
verge. Zhang [6] used the DPMM model for online document
clustering and used empirical Bayes method [7] to estimate the
parameters instead of taking a full Bayesian approach. Neal
[8] introduced a collapsed Gibbs Sampling algorithm for the
general Dirichlet Process Mixture (DPM) model. Specifically,
MacEachern [9] and Neal [10] proposed the collapsed Gibbs
Sampling algorithm for the Dirichlet Process Normal Mixture
model and the Dirichlet Process Bernoulli Mixture model, re-
spectively. However, these mixture models are not appropriate
for text clustering. Differently, we are the first to propose the
collapsed Gibbs Sampling algorithm for the DPMM model
(GSDPMM) for text clustering, which is fast to converge and
can achieve very good performance on both short and long
text clustering.

Topic models like LDA [12] and PLSA [23] are probabilis-
tic generative models that can model texts and identify latent
semantics underlying the text collection. LDA assumes that
each document is generated by choosing a distribution over
topics and then choosing each word in the document from a
topic selected according to this distribution. Teh et al. [24]
proposed the Hierarchical Dirichlet Process (HDP) model as
an extension of LDA which can automatically determine the
appropriate number of topics needed. Different from LDA,
we assume that each document is generated by only one
topic (cluster) and the words in the document are generated
independently when the document’s cluster assignment is
known. We find that this model is more effective for the text
clustering task, and our extensive experimental study shows
that GSDPMM can achieve significantly better performance
than LDA on both long and short text datasets.

III. THE DPMM MODEL

The Dirichlet Process Multinomial Mixture (DPMM) mod-
el can be considered as an infinite extension of the Dirichlet
Multinomial Mixture (DMM) model [22]. The graphical rep-
resentation of the DMM model is shown in Figure 1a, which
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TABLE I: NOTATIONS

V size of the vocabulary
D number of documents in the corpus

L̄ average length of documents
~d documents in the corpus
~z cluster assignments of each document
I number of iterations
mz number of documents in cluster z
nz number of words in cluster z
nw
z number of occurrences of word w in cluster z

Nd number of words in document d
Nw

d number of occurrences of word w in document d

(a) DMM (b) DPMM

Fig. 1: Graphical Models

is equivalent to the following generative process:

Θ|α ∼ Dir(α) (III.1)

zd|Θ ∼ Mult(Θ) d = 1, ..., D (III.2)

Φk|β ∼ Dir(β) k = 1, ..., K (III.3)

d|zd, {Φk}
K
k=1 ∼ p(d|Φzd) (III.4)

Here, “X ∼ S” means “X is distributed according to S”, so
the right side is a specification of distribution.

The DMM model is a probabilistic generative model for
documents, and embodies two assumptions about the genera-
tive process: (1) the documents are generated by a mixture
model [25], and (2) there is a one-to-one correspondence
between mixture components and clusters. When generating
document d, the DMM model first selects a mixture component
(cluster) zd according to the mixture weights (weights of
clusters), Θ, in Equation III.2. Then document d is generated
by the selected mixture component (cluster) from distribution
p(d|Φzd) in Equation III.4. The weight vector of the clusters,
Θ, is generated by a Dirichlet distribution with a hyper-
parameter α, as in Equation III.1. The cluster parameters Φz

are also generated by a Dirichlet distribution with a hyper-
parameter β, as in Equation III.3.

The DMM model becomes the DPMM model when we let
K go to infinity, whose graphical representation is shown in
Figure 1b. The generative process of the DPMM model is as
follows:

Θ|α ∼ GEM(1, α) (III.5)

zd|Θ ∼ Mult(Θ) d = 1, ..., D (III.6)

Φk|β ∼ Dir(β) k = 1, ...,∞ (III.7)

d|zd, {Φk}
∞
k=1 ∼ p(d|Φzd) (III.8)

In the DPMM model, the Dirichlet prior Dir(α) is replaced
by a stick-breaking construction, Θ ∼ GEM(1, α) [26].
Different from the DMM model, the number of clusters in
the DPMM model is no longer a fixed value K.

In this paper, the probability of document d generated by
cluster zd is defined as follows:

p(d|Φzd) =
∏

w∈d

Mult(w|Φzd) (III.9)

Here, we make the Naive Bayes assumption: the words in a
document are generated independently when the document’s
cluster assignment zd is known. We also assume that the
probability of a word is independent of its position within the
document.

IV. APPROACH

A. Choosing an Existing Cluster

Before discussing the collapsed Gibbs sampling algorithm
for the Dirichlet Process Multinomial Mixture (DPMM) model,
we first look at the case of the Dirichlet Multinomial Mixture
(DMM) model. The documents ~d = {di}

D
i=1 are observed

and the cluster assignments ~z = {zi}
D
i=1 are latent. Because

conjugate priors are used, we can integrate out Θ and Φ. Then

we can sample zd from distribution p(zd = z|~z¬d, ~d, α, β),
which is the probability of document d choosing cluster z
given the information of other documents and their cluster
assignments. Factorize this conditional distribution, we have:

p(zd = z|~z¬d, ~d, α, β)

∝ p(zd = z|~z¬d, ~d¬d, α, β)p(d|zd = z, ~z¬d, ~d¬d, α, β)
(IV.1)

∝ p(zd = z|~z¬d, α)p(d|zd = z, ~dz,¬d, β) (IV.2)

Here, we use the Bayes Rule in Equation IV.1, and apply the
properties of D-Separation [19] in Equation IV.2. The first
term in Equation IV.2 indicates the probability of document
d choosing cluster z when we know the cluster assignments
of other documents. The second term in Equation IV.2 can
be considered as a predictive probability of document d given
~dz,¬d, i.e., the other documents currently assigned to cluster
z.

We will first derive the first term in Equation IV.2 as
follows:

p(zd = z|~z¬d, α)

=

∫

p(zd = z,Θ|~z¬d, α)dΘ (IV.3)

=

∫

p(Θ|~z¬d, α)p(zd = z|~z¬d,Θ, α)dΘ (IV.4)

=

∫

p(Θ|~z¬d, α)p(zd = z|Θ)dΘ (IV.5)

Here, Equation IV.3 exploits the Sum Rule of Probability [19].
We use the Product Rule of Probability [19] in Equation IV.4
and apply the properties of D-Separation in Equation IV.5. The
first term in Equation IV.5 is the posterior distribution of Θ and
the second term in Equation IV.5 is the following multinomial
distribution: Mult(zd = z|Θ) = Θz .
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Next, we derive the first term in Equation IV.5 as follows:

p(Θ|~z¬d, α)

=
p(Θ|α)p(~z¬d|Θ)

∫

p(Θ|α)p(~z¬d|Θ)dΘ
(IV.6)

=

1
∆(α)

∏K
k=1 Θ

α/K−1
k

∏K
k=1 Θ

mk,¬d

k
∫

1
∆(α)

∏K
k=1 Θ

α/K−1
k

∏K
k=1 Θ

mk,¬d

k dΘ
(IV.7)

=
1

∆(~m¬d + α/K)

K
∏

k=1

Θ
mk,¬d+α/K−1

k (IV.8)

= Dir(Θ|~m¬d + α/K) (IV.9)

Here, Equation IV.6 exploits the Bayes Rule.

Then, we can derive the first term in Equation IV.2 as
follows:

p(zd = z|~z¬d, α)

=

∫

Dir(Θ|~m¬d + α/K)Mult(zd = z|Θ)dΘ (IV.10)

=

∫

1

∆(~m¬d + α/K)
Θz

K
∏

k=1,k 6=z

Θ
mk,¬d+α/K−1

k dΘ (IV.11)

=
∆(~m+ α/K)

∆(~m¬d + α/K)
(IV.12)

=

∏K
k=1 Γ(mk + α/K)

Γ(
∑K

k=1(mk + α/K))

Γ(
∑K

k=1(mk,¬d + α/K))
∏K

k=1 Γ(mk,¬d + α/K)
(IV.13)

=
Γ(mz,¬d + α/K + 1)

Γ(mz,¬d + α/K)

Γ(D − 1 + α)

Γ(D + α)
(IV.14)

=
mz,¬d + α/K

D − 1 + α
(IV.15)

In Equation IV.12, we adopt the ∆ function used in [27], which

is defined as ∆(~α) =
∏

K
k=1

Γ(α)

Γ(
∑

K
k=1

α)
. Using the property of Γ

function: Γ(x+ 1) = xΓ(x), we can get Equation IV.15 from
Equation IV.14. In Equation IV.15, mz,¬d is the number of
documents in cluster z without considering document d, and
D is the total number of documents in the dataset. Equation
IV.15 indicates that document d will tend to choose larger
clusters when we only consider the cluster assignments of the
other documents.

The second term in Equation IV.2 considers the words of
the documents in each cluster which actually indicates some
kind of similarity between document d and cluster z.

p(d|zd = z, ~dz,¬d, β)

=

∫

p(d,Φz|zd = z, ~dz,¬d, β)dΦz (IV.16)

=

∫

p(Φz|zd = z, ~dz,¬d, β)p(d|Φz, zd = z, ~dz,¬d, β)dΦz

(IV.17)

=

∫

p(Φz|~dz,¬d, β)p(d|Φz, zd = z)dΦz (IV.18)

Here, Equation IV.16 exploits the Sum Rule of Probability
[19]. We use the Product Rule of Probability in Equation
IV.17 and apply the properties of D-Separation [19] to obtain
Equation IV.18.

Next, we try to derive the first term in Equation IV.18 as

follows:

p(Φz|~dz,¬d, β)

=
p(Φz|β)p(~dz,¬d|Φz)

∫

p(Φz|β)p(~dz,¬d|Φz)dΦz

(IV.19)

=

1
∆(β)

∏V
t=1 Φ

β−1
z,t

∏V
t=1 Φ

nt
z,¬d

k,t

∫

1
∆(β)

∏V
t=1 Φ

β−1
z,t

∏V
t=1 Φ

nt
z,¬d

k,t dΦz

(IV.20)

=
1

∆(~nz + β)

V
∏

t=1

Φ
nt
z,¬d+β−1

z,t (IV.21)

= Dir(Φz|~nz,¬d + β) (IV.22)

Here, Equation IV.19 exploits the Bayes Rule.

Then, we can obtain the second term in Equation IV.2 as
follows:

p(d|zd = z, ~dz,¬d, β)

=

∫

Dir(Φz|~nz,¬d + β)
∏

w∈d

Mult(w|Φz)dΦz (IV.23)

=

∫

1

∆(~nz,¬d + β)

V
∏

t=1

Φ
nt
z,¬d+β−1

z,t

∏

w∈d

Φ
nw
d

z,wdΦz (IV.24)

=
∆(~nz + β)

∆(~nz,¬d + β)
(IV.25)

=

∏V
t=1 Γ(n

t
z + β)

Γ(
∑V

t=1(n
t
z + β))

Γ(
∑V

t=1(n
t
z,¬d + β))

∏V
t=1 Γ(n

t
z,¬d + β)

(IV.26)

=

∏

w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)

∏Nd

i=1(nz,¬d + V β + i− 1)
(IV.27)

Because the Γ function has the following property:
Γ(x+m)
Γ(x) =

∏m

i=1(x + i − 1), we can get Equation IV.27 from Equation
IV.26. In Equation IV.27, Nw

d and Nd are the number of
occurrences of word w in document d and the total number
of words in document d, respectively, and Nd =

∑
w∈d N

w
d .

Besides, nw
z,¬d and nz,¬d are the number of occurrences

of word w in cluster z and the total number of words in
cluster z without considering document d, respectively, and

nz,¬d =
∑V

w=1 n
w
z,¬d. We can notice that Equation IV.27

actually evaluates some kind of similarity between document
d and cluster z, and document d will tend to choose a cluster
whose documents share more words with it.

Finally, we have the probability of document d choosing
cluster zd given the information of other documents and their
cluster assignments as follows:

p(zd = z|~z¬d, ~d, α, β)

∝
mz,¬d + α/K

D − 1 + α

∏

w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)

∏Nd

i=1(nz,¬d + V β + i− 1)
(IV.28)

We can generalize the DMM model to the DPMM model
by letting K go to infinity. By doing so, the probability of
document d choosing one of the existing K clusters evolves
from Equation IV.28 to Equation IV.29 as follows:

p(zd = z|~z¬d, ~d, α, β)

∝
mz,¬d

D − 1 + α

∏

w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)

∏Nd

i=1(nz,¬d + V β + i− 1)
(IV.29)
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The first part of Equation IV.29 relates to Rule 1 of
GSDPMM (Choose a cluster with more documents), as it will
have larger value when mz,¬d (the number of documents in
cluster z) is larger. This is also known as the “richer gets
richer” or “clustering tendency”, which will lead larger clusters
to get larger [26]. As a result, the first part of Equation
IV.29 conforms to the completeness objective of clustering
(all members of a ground true group are assigned to the same
cluster) [28].

The second part of Equation IV.29 relates to Rule 2 of
GSDPMM (Choose a cluster whose documents share more
words with the current document), which is actually a product
of Nd parts that correspond to the Nd words of document
d. For each word w in document d, the corresponding part
measures the fraction of the occurrences of word w in cluster
z. When cluster z has more documents that share same words
with document d, the second part of Equation IV.29 will be
larger, and document d will be more likely to choose cluster
z. As a result, the second part of Equation IV.29 conforms to
the homogeneity objective of clustering (each cluster contains
only members of a single ground true group) [28].

GSDPMM can use parameter β to balance the two parts of
Equation IV.29, in other words, to balance the completeness
and homogeneity of the clustering results. When β is larger,
the second part of Equation IV.29 is less sensitive to nw

z,¬d (the
number of words in cluster z without considering document
d), and its influence to Equation IV.29 will be smaller. On the
other hand, the influence of the first part of Equation IV.29
will get larger. In other words, GSDPMM will focus more on
the completeness objective when β is larger.

In addition, notice that all the information we need to
compute Equation IV.29 are mz,¬d (the number of documents
in cluster z), nz,¬d (the number of words in cluster z without
considering document d), and nw

z,¬d (the number of occur-
rences of word w in cluster z without considering document
d), we only need to update these values before and after a
new sample zd is drawn with complexity linear to the length
of document d. In Section IV-C, we will discuss the time and
space complexity of GSDPMM, and show that they are O(DL̄)
and O(KDL̄) respectively, where L̄ is the average length of
the documents.

B. Choosing a New Cluster

We denote a new cluster as K + 1, and derive the con-
ditional probability of document d choosing a new cluster as
follows:

p(zd = K + 1|~z¬d, ~d, α, β)

∝ p(zd = K + 1|~z¬d, ~d¬d, α, β)p(d|zd = K + 1, ~z¬d, ~d¬d, α, β)
(IV.30)

= p(zd = K + 1|~z¬d, α)p(d|zd = K + 1, β) (IV.31)

Here, we use the Bayes Rule to obtain Equation IV.30, and
apply the properties of D-Separation [19] to get Equation
IV.31. The first term in Equation IV.31 indicates the probability
of document d choosing a new cluster when we know the
cluster assignments of other documents. The second term in
Equation IV.31 can be considered as the predictive probability
of document d being generated by the new cluster.

We can derive the first term in Equation IV.31 as follows:

p(zd = K + 1|~z¬d, α)

= 1−
K
∑

k=1

p(zd = k|~z¬d, α) (IV.32)

= 1−

∑K
k=1 mk,¬d

D − 1 + α
(IV.33)

= 1−
D − 1

D − 1 + α
(IV.34)

=
α

D − 1 + α
(IV.35)

Then, we derive the second term in Equation IV.31 as follows:

p(d|zd = K + 1, β)

=

∫

p(d,ΦK+1|zd = K + 1, β)dΦK+1 (IV.36)

=

∫

p(ΦK+1|zd = K + 1, β)p(d|ΦK+1, zd = K + 1, β)dΦK+1

(IV.37)

=

∫

p(ΦK+1|β)p(d|ΦK+1, zd = K + 1)dΦK+1 (IV.38)

=

∫

Dir(ΦK+1|β)
∏

w∈d

Mult(w|ΦK+1)dΦK+1 (IV.39)

=

∫

1

∆(β)

V
∏

t=1

Φβ−1
K+1,t

∏

w∈d

Φ
Nw

d

K+1,wdΦK+1 (IV.40)

=
∆(~nK+1 + β)

∆(β)
(IV.41)

=

∏V
t=1 Γ(n

t
K+1 + β)

Γ(
∑V

t=1(n
t
K+1 + β))

Γ(
∑V

t=1 β)
∏V

t=1 Γ(β)
(IV.42)

=

∏

w∈d

∏Nw
d

j=1(β + j − 1)
∏Nd

i=1(V β + i− 1)
(IV.43)

Here, Equation IV.36 uses the Sum Rule of Probability and
Equation IV.37 exploits the Product Rule of Probability. We
apply the properties of D-Separation [19] to get Equation
IV.39. Because the Γ function has the following property:
Γ(x+m)
Γ(x) =

∏m

i=1(x+ i− 1), we can get Equation IV.43 from

Equation IV.42.

Now, we have the probability distribution of a document
choosing a new cluster as follows:

p(zd = K + 1|~z¬d, ~d, α, β)

∝
α

D − 1 + α

∏

w∈d

∏Nw
d

j=1(β + j − 1)
∏Nd

i=1(V β + i− 1)
(IV.44)

where D is the total number of documents and V is the size
of the vocabulary. Nw

d and Nd are the number of occurrences
of word w in document d and the total number of words in
document d, respectively, and Nd =

∑
w∈d N

w
d .

The first part of Equation IV.44 relates to Rule 1 of
GSDPMM (Choose a cluster with more documents), and α
is the pseudo number of documents in the new cluster. The
second part of Equation IV.44 relates to Rule 2 of GSDPMM
(Choose a cluster whose documents share more words with the
current document), and β is the pseudo number of occurrences
of each word in the new cluster. When α is larger, the
documents are more likely to choose a new cluster. In Section
V-D, we show that GSDPMM can detect the outliers in the
documents.
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C. The GSDPMM Algorithm

The detail of the collapsed Gibbs Sampling for the DPMM
model (abbr. to GSDPMM) is shown in Algorithm 1, and the
meaning of the variables is shown in Table I. The input for the

GSDPMM algorithm is D documents, ~d = {di}
D
i=1, and the

output is the number of clusters K and the cluster assignment
for each document, ~z = {zi}

D
i=1.

We assign all documents in a single cluster in the initial-
ization step, then we traverse the documents for I iterations.
In each iteration, each document will re-choose one of the
existing clusters or a new cluster in turn. As this process
goes on, some new clusters will be generated and finally
the documents will be clustered well into these clusters. In
Section V-E, we found that GSDPMM can achieve good and
stable performance with only five iterations on three different
datasets, which means GSDPMM can converge fast.

GSDPMM uses only four large data structures: nw
z having

dimension KV (number of occurrences of word w in each
cluster), nz having dimension K (number of words in each
cluster), mz having dimension K (number of documents in
each cluster), ~z having dimension D (cluster assignments of
each document). We can see none of the above structures
needs much space. Actually, when dealing with huge datasets,
GSDPMM spends most space to store the words of each
document with complexity O(DL̄), where L̄ is the average
length of the documents. This is an advantage of GSDPMM
compared to methods that use the vector space model [29]
to represent the documents. Because the vector space model
needs to represent each document as a vector of size V which
is the size of the dictionary. Therefore, the space complexity
of methods using the vector space model is O(DV ), which is
much larger than that of GSDPMM, because V is often larger
than 105 in text datasets.

In each iteration, we compute the probability of document d
choosing each of the K existing clusters using Equation IV.29,
as well as the probability of document d choosing a new cluster
using Equation IV.44. Then we sample a cluster for document
d from a multinomial distribution with the above K + 1
probabilities as parameters. The time complexity of Equation
IV.29 and Equation IV.44 are both linear to the average length
of documents, L̄. Therefore, the time complexity of each
iteration of GSDPMM is O(KDL̄).

D. Discussion

1) The High-dimensional Problem: In traditional
similarity-based clustering methods, we need to represent
documents with vectors whose length are the vocabulary
size and define similarity between documents with some
distance metric like cosine similarity. As these vectors are
high-dimensional, the similarity between these documents will
lose their effectiveness and statistical significance because
of irrelevant attributes [2]. Therefore, clustering algorithms
based on similarity measure between documents may no
longer be effective in the high-dimensional space. Differently,
GSDPMM evaluates the frequency of the words in a document
appearing in each cluster as some kind of similarity between
the document and the clusters. As GSDPMM only considers
the words in the current document, it will not be affected by

Algorithm 1: GSDPMM

Data: Document vector ~d.
Result: Number of clusters K, cluster assignments of

each document ~z.
begin

//Initialization
K = K0 (Default K0 = 1)
Zero all count variables mz, nz , and nw

z

for each document d ∈ [1, D] do
Sample a cluster for d:
zd ← z ∼Multinomial(1/K)
mz ← mz + 1 and nz ← nz +Nd

for each word w ∈ d do
nw
z ← nw

z +Nw
d

//Collapsed Gibbs Sampling
for i ∈ [1, I] do

for each document d ∈ [1, D] do
Record the current cluster of d: z = zd
mz ← mz − 1 and nz ← nz −Nd

for each word w ∈ d do
nw
z ← nw

z −Nw
d

if nz == 0 then
//Remove the empty cluster
K ← K − 1
Re-arrange cluster indices so that
1, ...,K are active (i.e., non-empty);

Compute the probability of document d
choosing each of the K existing clusters
with Equation IV.29 or a new cluster with
Equation IV.44;
Sample cluster index z for document d from
a multinomial distribution with the above
K + 1 probabilities as parameters;
if z ∈ [1,K] then

//An existing cluster is chosen
mz ← mz + 1 and nz ← nz +Nd

for each word w ∈ d do
nw
z ← nw

z +Nw
d

else
//A new cluster is chosen
K ← K + 1
Initialize mK , nK , and nw

K as zero

other irrelevant words in the vocabulary, and can deal with
the high-dimensional problem of text clustering.

2) Outlier Detection: If a document is an outlier of the
dataset, this document will have a really low probability of
choosing an existing cluster. Because none of these existing
clusters have documents that share many words with the outlier
document, and Equation IV.29 will be small for any existing
cluster. On the other hand, Equation IV.44 will have a relatively
larger value for this outlier document, and this document
will tend to choose a new cluster. In later iterations, other
documents are less likely to choose this new cluster as they
do not share many words with the outlier document, and this
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new cluster will tend to have only one document (the outlier)
in the result. Therefore, the clusters with only one document
in the result of GSDPMM can be regarded as outliers in the
dataset. In Section V-D, we find that GSDPMM can achieve
both really high recall and precision for the outlier detection
task.

3) One Document Belongs to One Cluster: Although we
assume that each document belongs to only one cluster,
GSDPMM can still obtain the probability of each document
belonging to each cluster with Equation IV.29. This means
GSDPMM is a soft-clustering algorithm. Besides, GSDPMM
has two advantages compared with algorithms (like LDA)
which assume that each document is a distribution over topics
as follows. First, in each iteration, GSDPMM only needs to
sample a cluster for each document, while LDA needs to
sample a topic for each word. This means GSDPMM has lower
time complexity than LDA. Second, when sampling a topic
for a word, LDA considers the popularity of the topic in the
current document and the popularity of the current word in
the topic. When we first see a document, we do not know the
popularity of each topic in the document, and the first rule is
useless. On the other hand, GSDPMM considers the popularity
of each cluster in the whole dataset and the popularity of the
document’s words in the cluster. Even we first see a document,
we already have the current popularity of each cluster in the
dataset, and the two rules can both be useful. This illustrates
why GSDPMM can converge faster than LDA.

4) Representation of Clusters: As we know, Φz,w corre-
sponds to the probability of word w being generated by cluster
z, and can be regarded as the importance of word w to cluster
z. With the GSDPMM algorithm, we can estimate the number
of clusters, K, and the cluster assignment zd for each document
d. For each topic z = 1, ...,K, we can derive the posterior of
Φz as follows:

p(Φz|~d, ~z, α, β)

= p(Φz|~dz, β) (IV.45)

=
p(Φz|β)p(~dz|Φz)

∫

p(Φz|β)p(~dz|Φz)dΦz

(IV.46)

=

1
∆(β)

∏V
w=1 Φ

β−1
z,w

∏V
w=1 Φ

nw
z

k,w
∫

1
∆(β)

∏V
w=1 Φ

β−1
z,w

∏V
w=1 Φ

nw
z

k,wdΦz

(IV.47)

=
1

∆(~nz + β)

V
∏

w=1

Φ
nw
z +β−1

z,w (IV.48)

= Dir(Φz|~nz + β) (IV.49)

where ~nz = {nw
z }

V
w=1, and nw

z is the number of occurrences
of word w in the zth cluster. Here, Equation IV.45 uses the
properties of D-Separation, and Equation IV.46 exploits the
Bayes Rule.

Using the expectation of the Dirichlet distribution, we can
estimate Φz,w as follows:

Φ̂z,w =
nw
z + β

nz + V β
(IV.50)

where nw
z is the number of occurrences of word w in cluster z,

and nz is the total number of words in cluster z. It is interesting
to notice that Equation IV.50 actually defines the fraction of
occurrences of word w in cluster z, and is highly related to the
second part of Equation IV.29. If word w has a relatively high

TABLE II: STATISTICS OF TEXT DATASETS (D:Number of Documents,
K:Number of Clusters, V : Vocabulary Size, Avg Len: Average Length of
the Documents)

Dataset D K V Avg Len

20NG 18,846 20 181,754 137.85
Tweet 2,472 89 5,098 8.56
TSet 11,109 152 8,111 6.23
SSet 11,109 152 18,478 22.20

TSSet 11,109 152 19,672 28.43

value of Φ̂z,w, it can be regarded as the representative word of
cluster z. In Section V-G, we present the top ten representative
words for each cluster that GSDPMM finds on a dataset, and
find that these words can perfectly represent those clusters.

V. EXPERIMENTAL STUDY

A. Experimental Setup

1) Data Sets: We used three real text datasets in the
experimental study, which are available on Github1:

• 20NG2 . This dataset consists of 18,846 documents
from 20 major newsgroups. This is a classical dataset
for the evaluation of text clustering methods. The
average length of the documents in this dataset is
137.85.

• TweetSet. This dataset consists of 2,472 tweets that
are highly relevant to 89 queries. The relevance be-
tween tweets and queries are manually labelled in the
2011 and 2012 microblog tracks at the Text REtrieval
Conference 3 . The average length of the tweets in this
dataset is 8.56.

• Google News. This dataset consists of the titles and
snippets of 11,109 news articles about 152 events
[3]. This dataset is further divided into three dataset-
s: TitleSet(TSet), SnippetSet(SSet), and TitleSnippet-
Set(TSSet). The TSet and SSet only contain the titles
and snippets, respectively, while the TSSet contains
both the titles and snippets.

For all datasets, the preprocessing process includes con-
verting all letters into lowercase, removing stop words, and
stemming. After preprocessing, the statistics of these text
datasets are shown in Table II. We can see the average length
of the documents in 20NG is much larger than that of the
TweetSet and Google News datasets. We plan to evaluate the
performance of clustering methods on short and long texts.

2) Evaluation Metrics: The Normalized Mutual Informa-
tion (NMI) is widely used to evaluate the quality of the
clustering results. NMI measures the amount of statistical
information shared by the random variables representing the
cluster assignments and the ground truth groups of the docu-
ments. In general, NMI is defined as follows [30]:

NMI =

∑

h,l nh,l log (
n·nh,l

nh·nl
)

√

(
∑

h nh log nh

n
)(
∑

l nl log
nl

n
)

(V.1)

1https://github.com/jackyin12/GSDMM/
2http://qwone.com/∼jason/20Newsgroups/
3http://trec.nist.gov/data/microblog.html
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Fig. 2: Comparison of the convergence speed of the clustering methods.

TABLE III: NMI RESULTS OF THE CLUSTERING METHODS.

K GSDPMM K-means LDA GSDMM

10 .667 ± .004 .235 ± .008 .585 ± .013 .613 ± .007

20NG 20 .667 ± .004 .321 ± .006 .602 ± .012 .642 ± .004

50 .667 ± .004 .348 ± .006 .617 ± .013 .656 ± .002

50 .875 ± .005 .696 ± .008 .775 ± .012 .844 ± .006

Tweet 89 .875 ± .005 .725 ± .007 .797 ± .011 .862 ± .008

150 .875 ± .005 .742 ± .006 .811 ± .012 .871 ± .004

100 .873 ± .002 .687 ± .005 .769 ± .012 .830 ± .004

TSet 152 .873 ± .002 .721 ± .009 .784 ± .015 .852 ± .009

200 .873 ± .002 .730 ± .008 .806 ± .013 .868 ± .006

100 .891 ± .004 .739 ± .006 .848 ± .005 .854 ± .004

SSet 152 .891 ± .004 .756 ± .006 .850 ± .006 .867 ± .008

200 .891 ± .004 .768 ± .007 .862 ± .004 .885 ± .005

100 .912 ± .003 .803 ± .009 .867 ± .004 .879 ± .009

TSSet 152 .912 ± .003 .837 ± .004 .881 ± .003 .898 ± .004

200 .912 ± .003 .841 ± .005 .904 ± .005 .910 ± .003

where nh is the number of documents in group h, nl is the
number of documents in cluster l, and nh,l is the number
of documents in group h as well as in cluster l. When the
clustering results perfectly match the ground truth groups, the
NMI value will be one. While when the clustering results are
randomly generated, the NMI value will be close to zero.

Homogeneity, Completeness, and V-Measure are used in
[28]. Homogeneity represents the objective that each cluster
contains only members of a ground truth group and complete-
ness represents the objective that all members of a ground
truth group are assigned to the same cluster. V-measure is
an entropy-based measure which explicitly measures how
successfully the criteria of homogeneity and completeness
have been satisfied, and is actually equivalent to Normalized
Mutual Information (NMI) [31]. In the experimental study,
we use NMI, Homogeneity, and Completeness to evaluate the
performance of the clustering methods.

3) Methods for Comparison: In the experimental study,
we compare GSDPMM with the following three clustering
methods:

• K-means. K-means [11] is probably the most widely
used method for clustering. Following [1], we set the
similarity metric as cosine similarity. To cope with
the problem of falling into local maximum, we set
the number of initializations at 10 for each run of K-
means.

• LDA. We treat the topics found by LDA [12] as clus-
ters and assign each document to the cluster with the
highest value in its topic proportion vector. Following
[32], we set α = K/50 and β = 0.1 where K is the
number of topics assumed by LDA.

• GSDMM1. This is the state-of-the-art clustering
method for short text clustering which is actually the
collapsed Gibbs sampling algorithm for the Dirichlet
Multinomial Mixture model. Following [3], we set
α = 0.1 and β = 0.1 for GSDMM.
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Fig. 4: Outlier detection with different values of α.

For GSDPMM, we set K = 1, β = 0.02, and α = 0.1×D,
where D is the number of documents in the dataset..

B. Comparison with Existing Methods

In this part, we try to investigate the convergence speed and
performance of GSDPMM compared with K-means [11], LDA
[12], and GSDMM [3]. Figure 2 shows the convergence speed
on the clustering methods on 20NG, TweetSet, and TitleSet,
and we have similar results on SnippetSet and TitleSnippetSet
with the TitleSet. For GSDPMM, K-means, and GSDMM, we
set K at the true number of clusters in each dataset. One obser-
vation is that the convergence speed of GSDPMM, K-means,
and GSDMM are faster than the convergence speed of LDA.
Another observation is that all clustering methods converge
faster on the short text datasets (TweetSet and GoogleNews)
than the long text dataset (20NG).

We report the mean and standard deviation of the NMI of
the results by running each method for 20 independent trials on
each dataset in Table III. For GSDPM, K-means, and GSDMM,
we set the number of iterations at 10. While for LDA, we
set the number of iterations at 100, because LDA is slow to
converge as shown in Figure 2. We set the initial number of
clusters at one for GSDPMM. As for other algorithms, we
set three different initial number of clusters for each dataset.
For each algorithm, we run 20 independent trials on each
dataset, and report the mean and standard deviation of the
NMI of the results in Table III. From Table III, we can see that
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Fig. 5: Number of clusters found by GSDPMM with different values of α.
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Fig. 6: Performance of GSDPMM with different values of α.

GSDPMM always achieves the highest performance compared
with the other three methods on all datasets. Meanwhile, the
standard deviations of the 20 independent trials of GSDPMM
are quite small which means GSDPMM has high consistency.
An interesting observation is that all methods perform better on
short text datasets (TweetSet and GoogleNews) than the long
text dataset (20NG). One possible reason is that TweetSet and
GoogleNews are easier for clustering because they are about
events and have smaller dictionary as shown in Table II. In
addition, notice that these methods have better performance
on TSSet and SSet than TSet. Another observation is that
K-means, LDA, and GSDMM all achieve better performance
when K is larger than the true number of clusters.

C. Scalability

In this part, we compare the scalability of GSDPMM with
K-means [11], LDA [12], and GSDMM [3]. All algorithms
were implemented in java and conducted on a machine running
on 64bit Ubuntu Server 12.04 LTS version with an Interl Xeon
E5310 1.60GHz processor and 19GB memory. We copied
20NG and TitleSet ten times respectively to construct two
datasets called LongSet and ShortSet. We set K at 50 and
200 on the LongSet and ShortSet respectively for K-means,
LDA, and GSDMM. We set the number of iterations at 10
for GSDPMM, K-means, and GSDMM. For LDA, we set the
number of iterations at 100, because LDA needs about 100
iterations to get converged.

Figure 3 shows the running time of the four clustering
methods on these two datasets with different number of docu-
ments, and we can see that the running time of these methods
are all linear to the number of documents. An observation is
that LDA is much slower than GSDPMM, and there are two
reasons for this. First, LDA needs to sample a topic (cluster)
for each word of the document, while GSDPMM only needs
to sample a cluster for a document. Second, LDA needs more
iterations to converge because LDA only considers the current
word when choosing a topic for the word, while GSDPMM
considers all words in the documents when choosing a topic

for the document. Another observation is that GSDPMM has
similar running time with GSDMM on LongSet, while it is
slower than GSDMM on ShortSet. However, we should note
that it is difficult to set a proper K for GSDMM as we do not
know the true number, as a result, we may have to choose a
really large K to ensure safety which will lead the complexity
of GSDMM to be large.

D. Outlier Detection

In this part, we try to investigate the ability of GSDPMM
for the outlier detection task. We manually generated 100
outlier documents for the 20NG dataset. Each document has
138 unique words that are not in the dictionary of 20NG.
We mixed these outlier documents into 20NG, and obtained a
dataset called Outlier20NG. We fix the number of iterations of
GSDPMM at 5 and beta at 0.02. Then, we run GSDPMM on
Outlier20NG with different values of α, and label the clusters
with only one document as outliers. The standard deviations
of the performance of outlier detection is reported by running
GSDPMM for 20 independent trials. The results are shown in
Figure 4.

From Figure 4, we can see that GSDPMM can almost
detect all the 100 outliers, and less than 10 documents in
the original 20NG dataset are detected as outliers. Therefore,
GSDPMM can achieve both really high recall and precision for
the outlier detection task. After examining the “False Positive”
outliers, we find that they are really different from the other
documents in their ground truth group, which indicates that
these documents are the potential true outliers in the original
20NG dataset.

Figure 5 shows the number of clusters found by GSDPMM
with different values of α, where we set different thresholds for
the size of the clusters. For example, when the threshold equals
one, the clusters with only one document will not be counted.
An interesting observation is that the number of clsuters found
by GSDPMM grows with α on the TweetSet and TitleSet,
while remains stable on 20NG. One possible explanation is
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Fig. 7: Number of clusters found by GSDPMM with different number of iterations. We set different thresholds for the size of the clusters to discard the outliers
detected by GSDPMM. For example, when the threshold is set to be three, the clusters with no more than three document will be discarded.
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Fig. 8: Performance of GSDPMM with different number of iterations. We can see that the performance of GSDPMM grows quickly and gets stable within about
five iterations.

that there are more potential outliers in these two short text
datasets than 20NG. These potential outliers are more likely
to be detected when we enlarge α, because α influence the
probability of a document choosing a new cluster.

Figure 6 shows the performance of GSDPMM with differ-
ent values of α. It is interesting to notice that NMI on the
TweetSet and TitleSet remains stable, although the number
of clusters found by GSDPMM grows with α on these two
datasets, which indicates that GSDPMM is robust to outliers.
Another interesting observation is that when we remove the
clusters with only one document, the number of clusters found
by GSDPMM is stable with different α in all the datasets.

E. Infer the Number of Clusters

In this part, we try to investigate the ability of GSDPMM to
infer the number of clusters automatically. We set α = 0.1×D
(D is the number of documents in the dataset), K = 1, and
β = 0.02 for all the datasets.

Figure 7 shows the number of clusters found by GSDPMM
with different number of iterations, and we set different
thresholds for the size of the clusters to discard the outliers
detected by GSDPMM. For example, when the threshold is
set to be three, the clusters with no more than three document
will be discarded. We only reported the results of 20NG,
TweetSet, and TitleSet here, and we have similar results on
the SnippetSet and TitleSnippetSet. From Figure 7, we can see
the number of clusters found by GSDPMM on these datasets
all get stable after several iterations. This means we can just
assign all documents in a single cluster in the initialization,
and the number of clusters will grow to a reasonable level
after several iterations. In other words, GSDPMM can infer
the number of clusters automatically.

An observation is that the number of clusters found on
TweetSet and TitleSet grows to a large number after one
iteration, then drops and gets stable. While the number of

clusters found on 20NG grows slightly and gets stable. One
possible reason is that there are more ground truth clusters
in the TweetSet and TitleSet, and many of them are small
clusters. As a result, the documents of these two datasets are
more likely to choose new clusters when we run GSDPMM,
and the number of clusters grows fast in the first iteration.
Then, these documents will tend to choose high quality clusters
that contain similar documents with them, and the number of
clusters will drop and finally gets stable.

Figure 8 shows the performance of GSDPMM with dif-
ferent number of iterations. One observation is that in the
initialization, the homogeneity is 0 and the completeness is
1, as all the documents are assigned in the same cluster.
Another observation is that the homogeneity grows and the
completeness drops after one iteration. The reason is that
many documents will choose new generated clusters that have
similar documents with them, as a result, the purity of the
clusters gets larger and the homogeneity grows. On the other
hand, the ground truth groups are not in a single cluster any
more, because the number of clusters gets larger, and the
completeness drops. In addition, notice that the performance
of GSDPMM grows quickly and gets stable within about five
iterations, which illustrates that GSDPMM can converge fast.

F. Balance Completeness and Homogeneity

In this part, we try to investigate the influence of β to
the results of GSDPMM. Here, we fix α at 0.1 × D (D is
the number of documents in the dataset), and the number of
iterations at 5.

Figure 9 shows the number of clusters found by GSDPMM
with different values of β on 20NG, TweetSet, and TitleSet,
and we have similar results on SnippetSet and TitleSnippetSet
with the TitleSet. We can see that the number of clusters found
by GSDPMM drops when β gets larger. The reason is that
β can balance the two rules of GSDPMM as discussed in
Section IV-A. When β is larger, the probability of a document
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Fig. 9: Number of clusters found by GSDPMM with different values of β.
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Fig. 10: Performance of GSDPMM with different values of β.

choosing a cluster is less sensitive to the second part of
Equation IV.29. As a result, Rule 1 (Choose a cluster with
more documents) plays a more important rule than Rule 2
(Choose a cluster whose documents share more words with the
current document), and GSDPMM will result in less number
of clusters and achieve larger completeness.

Figure 10 shows the performance of GSDPMM with d-
ifferent values of β on 20NG, TweetSet, and TitleSet. An
observation is that GSDPMM can achieve larger completeness
with larger β and can achieve larger homogeneity with smaller
β, which means GSDPMM can balance completeness and
homogeneity with β.

G. Representation of Clusters

In this part, we try to investigate the ability of GSDPMM
to obtain the representative words of each cluster. We run
GSDPMM on 20NG, and set α = 0.1 ×D (D is the number
of documents in the dataset). The number of iterations is set
at 5 and β = 0.02. Table IV shows the top ten representative
words for the 18 clusters found by GSDPMM. These clusters
contain totally 16,266 documents which is about 86.3% of
the documents in 20NG. We can see that these representative
words can perfectly represent these clusters.

An interesting observation is that cluster “Hockey” and
cluster “Baseball” have similar representative words like
“game”, “team”, “year”, and “player”. The reason is that they
are both about sports, and they share many words about sports.
While GSDPMM can separate these two clusters really well,
“Hockey” contains 893 documents in which 96.9% are from
the ground truth “Hockey” group, and “Baseball” contains
906 documents in which 98.3% are from the ground truth
“Baseball” group.

Another observation is that we have two clusters labeled
as “Graphics”, while their representative words are not similar.
The reason is that ground truth “Graphics” group has two kinds
of documents, one is more application-related, and the other

is more research-related. GSDPMM separates these documents
into two clusters.

VI. CONCLUSION

In this paper, we propose a collapsed Gibbs Sampling
algorithm for the Dirichlet Process Multinomial Mixture model
for text clustering (abbr. to GSDPMM) that can cope with
the high-dimensional problem of text clustering, and has low
time and space complexity. We also propose some novel and
effective methods to detect the outliers in the dataset and
obtain the representative words of each cluster. Our extensive
experimental study shows that GSDPMM can achieve signifi-
cantly better performance than three other clustering methods,
and can achieve high consistency on both long and short
text datasets. We found that GSDPMM can infer the number
of clusters automatically and can scale well with huge text
datasets.

We should note that GSDPMM has potentially well per-
formance for incremental clustering. We can first group a
number of documents into clusters with GSDPMM. Then each
time a new document arrives, we can classify it into one of
the existing clusters or a new cluster using Equation IV.29
and Equation IV.44, then we can update the corresponding
statistics. In this way, new clusters can be easily detected and
outdated documents can be easily removed. In future, we plan
to study how to apply GSDPMM for incremental clustering.
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